Leather Cream Conditioner
Alfa Romeo (FCA US LLC Service and Customer Care Division)

SECTION 1 IDENTIFICATION

Product Identifier

<table>
<thead>
<tr>
<th>Product name</th>
<th>Leather Cream Conditioner</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemical Name</td>
<td>water</td>
</tr>
<tr>
<td>Synonyms</td>
<td>68361291AA,68360783AA</td>
</tr>
<tr>
<td>Other means of identification</td>
<td>Not Available</td>
</tr>
</tbody>
</table>

Recommended use of the chemical and restrictions on use

| Relevant identified uses | Use according to manufacturer’s directions. |

Name, address, and telephone number of the chemical manufacturer, importer, or other responsible party

<table>
<thead>
<tr>
<th>Registered company name</th>
<th>Alfa Romeo (FCA US LLC Service and Customer Care Division)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Address</td>
<td>2631 Lawrence Avenue, Center Line MI 48015 United States</td>
</tr>
<tr>
<td>Telephone</td>
<td>1-800-846-6727</td>
</tr>
<tr>
<td>Fax</td>
<td>Not Available</td>
</tr>
<tr>
<td>Website</td>
<td>Not Available</td>
</tr>
<tr>
<td>Email</td>
<td>moparsds@fcagroup.com</td>
</tr>
</tbody>
</table>

Emergency phone number

<table>
<thead>
<tr>
<th>Association / Organisation</th>
<th>Not Available</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emergency telephone numbers</td>
<td>Not Available</td>
</tr>
<tr>
<td>Other emergency telephone numbers</td>
<td>Not Available</td>
</tr>
</tbody>
</table>

SECTION 2 HAZARD(S) IDENTIFICATION

Classification of the substance or mixture

<table>
<thead>
<tr>
<th>CHEMWATCH HAZARD RATINGS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flammability</td>
</tr>
<tr>
<td>Toxicity</td>
</tr>
<tr>
<td>Body Contact</td>
</tr>
<tr>
<td>Reactivity</td>
</tr>
<tr>
<td>Chronic</td>
</tr>
</tbody>
</table>

| Classification | Eye Irritation Category 2A |

Label elements

Note: The hazard category numbers found in GHS classification in section 2 of this SDSs are NOT to be used to fill in the NFPA 704 diamond. Blue = Health Red = Fire Yellow = Reactivity White = Special (Oxidizer or water reactive substances)
GHS label elements

SIGNAL WORD WARNING

Hazard statement(s)

H319 Causes serious eye irritation.

Hazard(s) not otherwise specified

Not Applicable

Precautionary statement(s) Prevention

P101 If medical advice is needed, have product container or label at hand.

P102 Keep out of reach of children.

P103 Read label before use.

P280 Wear protective gloves/protective clothing/eye protection/face protection.

Precautionary statement(s) Response

P305+P351+P338 IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing.

P337+P313 If eye irritation persists: Get medical advice/attention.

Precautionary statement(s) Storage

Not Applicable

Precautionary statement(s) Disposal

Not Applicable

SECTION 3 COMPOSITION / INFORMATION ON INGREDIENTS

Substances

See section below for composition of Mixtures

Mixtures

<table>
<thead>
<tr>
<th>CAS No</th>
<th>%[weight]</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Not Available</td>
<td><=5</td>
<td>non-ionic surfactants, colouring agent, METHYLISOTHIAZOLINONE, 2-octyl-2H-isothiazol-3-one, BENZISOTHIAZOLINONE</td>
</tr>
<tr>
<td>68131-39-5</td>
<td>0-2.5</td>
<td>alcohols C12-15 ethoxylated</td>
</tr>
</tbody>
</table>

The specific chemical identity and/or exact percentage (concentration) of composition has been withheld as a trade secret.

SECTION 4 FIRST-AID MEASURES

Description of first aid measures

Eye Contact

If this product comes in contact with the eyes:
- Wash out immediately with fresh running water.
- Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids.
- Seek medical attention without delay; if pain persists or recurs seek medical attention.
- Removal of contact lenses after an eye injury should only be undertaken by skilled personnel.

Skin Contact

If skin contact occurs:
- Immediately remove all contaminated clothing, including footwear.
- Flush skin and hair with running water (and soap if available).
- Seek medical attention in event of irritation.

Inhalation

- If fumes, aerosols or combustion products are inhaled remove from contaminated area.
- Other measures are usually unnecessary.

Ingestion

- Immediately give a glass of water.
- First aid is not generally required. If in doubt, contact a Poisons Information Centre or a doctor.

Most important symptoms and effects, both acute and delayed

See Section 11

Indication of any immediate medical attention and special treatment needed

Treat symptomatically.

SECTION 5 FIRE-FIGHTING MEASURES

Extinguishing media
Special hazards arising from the substrate or mixture

Fire Incompatibility

None known.

Special protective equipment and precautions for fire-fighters

Fire Fighting

- Alert Fire Brigade and tell them location and nature of hazard.
- Wear full body protective clothing with breathing apparatus.
- Prevent, by any means available, spillage from entering drains or water course.
- Use water delivered as a fine spray to control fire and cool adjacent area.
- Avoid spraying water onto liquid pools.
- DO NOT approach containers suspected to be hot.
- Cool fire exposed containers with water spray from a protected location.
- If safe to do so, remove containers from path of fire.

Fire/Explosion Hazard

- Combustible.
- Slight fire hazard when exposed to heat or flame.
- Heating may cause expansion or decomposition leading to violent rupture of containers.
- On combustion, may emit irritating/toxic fumes.
- May emit acrid smoke.
- Mists containing combustible materials may be explosive.
- May emit corrosive fumes.

SECTION 6 ACCIDENTAL RELEASE MEASURES

Personal precautions, protective equipment and emergency procedures

See section 8

Environmental precautions

See section 12

Methods and material for containment and cleaning up

Minor Spills

- Remove all ignition sources.
- Clean up all spills immediately.
- Avoid breathing vapours and contact with skin and eyes.
- Control personal contact with the substance, by using protective equipment.
- Contain and absorb spill with sand, earth, inert material or vermiculite.
- Wipe up.
- Place in a suitable, labelled container for waste disposal.

Major Spills

Moderate hazard.

- Clear area of personnel and move upwind.
- Alert Fire Brigade and tell them location and nature of hazard.
- Wear breathing apparatus plus protective gloves.
- Prevent, by any means available, spillage from entering drains or water course.
- No smoking, naked lights or ignition sources.
- Increase ventilation.
- Stop leak if safe to do so.
- Contain spill with sand, earth or vermiculite.
- Collect recoverable product into labelled containers for recycling.
- Absorb remaining product with sand, earth or vermiculite.
- Collect solid residues and seal in labelled drums for disposal.
- Wash area and prevent runoff into drains.
- If contamination of drains or waterways occurs, advise emergency services.

Personal Protective Equipment advice is contained in Section 8 of the SDS.

SECTION 7 HANDLING AND STORAGE

Precautions for safe handling

Safe handling

- Avoid all personal contact, including inhalation.
- Wear protective clothing when risk of exposure occurs.
- Use in a well-ventilated area.
- Prevent concentration in hollows and sumps.
- DO NOT enter confined spaces until atmosphere has been checked.
- DO NOT allow material to contact humans, exposed food or food utensils.
- Avoid contact with incompatible materials.
- When handling, DO NOT eat, drink or smoke.
- Keep containers securely sealed when not in use.
- Avoid physical damage to containers.
- Always wash hands with soap and water after handling.
- Work clothes should be laundered separately. Launder contaminated clothing before re-use.
- Use good occupational work practice.
- Observe manufacturer’s storage and handling recommendations contained within this SDS.
- Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions are maintained.
- DO NOT allow clothing wet with material to stay in contact with skin
Conditions for safe storage, including any incompatibilities

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Material name</th>
<th>TEEL-1</th>
<th>TEEL-2</th>
<th>TEEL-3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leather Cream Conditioner</td>
<td>Not Available</td>
<td>Not Available</td>
<td>Not Available</td>
<td>Not Available</td>
</tr>
</tbody>
</table>

Storage incompatibility

- Metal can or drum
- Packaging as recommended by manufacturer.
- Check all containers are clearly labelled and free from leaks.

Exposure controls

Appropriate engineering controls

Engineering controls are used to remove a hazard or place a barrier between the worker and the hazard. Well-designed engineering controls can be highly effective in protecting workers and will typically be independent of worker interactions to provide this high level of protection.
The basic types of engineering controls are:

- Process controls which involve changing the way a job activity or process is done to reduce the risk.
- Enclosure and/or isolation of emission source which keeps a selected hazard "physically" away from the worker and ventilation that strategically "adds" and "removes" air in the work environment. Ventilation can remove or dilute an air contaminant if designed properly. The design of a ventilation system must match the particular process and chemical or contaminant in use.

Employers may need to use multiple types of controls to prevent employee overexposure.

General exhaust is adequate under normal operating conditions. Local exhaust ventilation may be required in specific circumstances, if risk of overexposure exists, wear approved respirator. Correct fit is essential to obtain adequate protection. Provide adequate ventilation in warehouse or closed storage areas. Air contaminants generated in the workplace possess varying "escape" velocities which, in turn, determine the "capture velocities" of fresh circulating air required to effectively remove the contaminant.

<table>
<thead>
<tr>
<th>Type of Contaminant</th>
<th>Air Speed:</th>
</tr>
</thead>
<tbody>
<tr>
<td>solvent, vapours, degreasing etc., evaporating from tank (in still air).</td>
<td>0.25-0.5 m/s (50-100 f/min)</td>
</tr>
<tr>
<td>aerosols, fumes from pouring operations, intermittent container filling, low speed conveyor transfers, welding, spray drift, plating acid fumes, pickling (released at low velocity into zone of active generation)</td>
<td>0.5-1 m/s (100-200 f/min)</td>
</tr>
<tr>
<td>direct spray, spray painting in shallow booths, drum filling, conveyor loading, crusher dusts, gas discharge (active generation into zone of rapid air motion)</td>
<td>1.25 m/s (200-500 f/min)</td>
</tr>
<tr>
<td>grinding, abrasive blasting, tumbling, high speed wheel generated dusts (released at high initial velocity into zone of very high rapid air motion).</td>
<td>2.5-10 m/s (500-2000 f/min)</td>
</tr>
</tbody>
</table>

Within each range the appropriate value depends on:

- Lower end of the range
- Upper end of the range

1: Room air currents minimal or favourable to capture
2: Contaminants of low toxicity or of nuisance value only.
3: Intermittent, low production.
4: Large hood or large air mass in motion
5: Disturbing room air currents
6: Contaminants of high toxicity
7: High production, heavy use
8: Small hood-local control only
9: Small hood

Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 1-2 m/s (200-400 f/min) for extraction of solvents generated in a tank 2 meters distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used.

Personal protection

- Safety glasses with side shields.
- Chemical goggles.
- Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lenses or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adhesion for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lenses should be removed at the first signs of eye redness or irritation - lens should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59], [AS/NZS 1336 or national equivalent]

Eye and face protection

- Wear safety footwear or safety gumboots, e.g. Rubber
- Thicker gloves (up to 3 mm or more) may be required where there is a mechanical (as well as a chemical) risk i.e. where there is abrasion or puncture potential

Skin protection

- Wear chemical protective gloves, e.g. PVC.
- Wear non-perfumed moisturizer is recommended.
- Thinner gloves (down to 0.1 mm or less) may be required where a high degree of manual dexterity is needed. However, these gloves are only likely to give short duration protection and would normally be just for single use applications, then disposed of.

Hands/feet protection

Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739, AS/NZS 2161.1 or national equivalent),

- When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended.
- Thicker gloves (up to 3 mm or more) may be required where there is a mechanical (as well as a chemical) risk i.e. where there is abrasion or puncture potential.
Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended.

Body protection
See Other protection below

Other protection
- Overalls
- P.V.C. apron
- Barrier cream
- Skin cleansing cream
- Eye wash unit

Thermal hazards
Not Available

Recommended material(s)

GLOVE SELECTION INDEX

Glove selection is based on a modified presentation of the: "Forsberg Clothing Performance Index". The effect(s) of the following substance(s) are taken into account in the computer-generated selection:

<table>
<thead>
<tr>
<th>Material</th>
<th>CPI</th>
</tr>
</thead>
<tbody>
<tr>
<td>VITON</td>
<td>A</td>
</tr>
<tr>
<td>BUTYL</td>
<td>C</td>
</tr>
<tr>
<td>NATURAL RUBBER</td>
<td>C</td>
</tr>
<tr>
<td>NEOPRENE</td>
<td>C</td>
</tr>
<tr>
<td>NITRILE</td>
<td>C</td>
</tr>
<tr>
<td>PVA</td>
<td>C</td>
</tr>
</tbody>
</table>

* CPI - Chemwatch Performance Index
 A: Best Selection
 B: Satisfactory; may degrade after 4 hours continuous immersion
 C: Poor to Dangerous Choice for other than short term immersion

NOTE: As a series of factors will influence the actual performance of the glove, a final selection must be based on detailed observation. -

NOTE: Where the glove is to be used on a short term, casual or infrequent basis, factors such as “feel” or convenience (e.g. disposability), may dictate a choice of gloves which might otherwise be unsuitable following long term or frequent use. A qualified practitioner should be consulted.

SECTION 9 PHYSICAL AND CHEMICAL PROPERTIES

Information on basic physical and chemical properties

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Appearance</td>
<td>Light beige</td>
</tr>
<tr>
<td>Physical state</td>
<td>Liquid</td>
</tr>
<tr>
<td>Relative density (Water = 1)</td>
<td>0.951</td>
</tr>
<tr>
<td>Odour</td>
<td>Not Available</td>
</tr>
<tr>
<td>Partition coefficient</td>
<td>n-octanol / water</td>
</tr>
<tr>
<td>Odour threshold</td>
<td>Not Available</td>
</tr>
<tr>
<td>Auto-ignition temperature</td>
<td>Not Available</td>
</tr>
<tr>
<td>pH (as supplied)</td>
<td>8.0</td>
</tr>
<tr>
<td>Decomposition temperature</td>
<td>Not Available</td>
</tr>
<tr>
<td>Melting point / freezing point</td>
<td>Not Available</td>
</tr>
<tr>
<td>Molecular weight (g/mol)</td>
<td>Not Available</td>
</tr>
<tr>
<td>Initial boiling point and boiling range</td>
<td>100</td>
</tr>
<tr>
<td>Taste</td>
<td>Not Available</td>
</tr>
<tr>
<td>Evaporation rate</td>
<td>Not Available</td>
</tr>
<tr>
<td>Flammability</td>
<td>Flammable.</td>
</tr>
<tr>
<td>Explosive properties</td>
<td>Not Available</td>
</tr>
<tr>
<td>Flammability</td>
<td>Oxidising properties</td>
</tr>
<tr>
<td>Upper Explosive Limit (%)</td>
<td>8.0</td>
</tr>
<tr>
<td>Surface Tension (dyn/cm or mN/m)</td>
<td>Not Available</td>
</tr>
<tr>
<td>Lower Explosive Limit (%)</td>
<td>0.6</td>
</tr>
<tr>
<td>Gas group</td>
<td>Not Available</td>
</tr>
<tr>
<td>Vapour pressure (kPa)</td>
<td>2.3</td>
</tr>
<tr>
<td>Not Available</td>
<td>Not Available</td>
</tr>
<tr>
<td>Solubility in water (g/L)</td>
<td>Partly miscible</td>
</tr>
<tr>
<td>pH as a solution (1%)</td>
<td>Not Available</td>
</tr>
<tr>
<td>Vapour density (Air = 1)</td>
<td>Not Available</td>
</tr>
<tr>
<td>VOC g/L</td>
<td>Not Available</td>
</tr>
</tbody>
</table>

SECTION 10 STABILITY AND REACTIVITY

Reactivity
See section 7

Chemical stability
- Unstable in the presence of incompatible materials.
- Product is considered stable.
- Hazardous polymerisation will not occur.

Possibility of hazardous reactions
See section 7

Conditions to avoid
See section 7

Incompatible materials
See section 7

Continued...
SECTION 11 TOXICOLOGICAL INFORMATION

Information on toxicological effects

Inhaled

The material is not thought to produce adverse health effects or irritation of the respiratory tract (as classified by EC Directives using animal models). Nevertheless, good hygiene practice requires that exposure be kept to a minimum and that suitable control measures be used in an occupational setting. Not normally a hazard due to non-volatile nature of product.

Ingestion

The material has NOT been classified by EC Directives or other classification systems as "harmful by ingestion". This is because of the lack of corroborating animal or human evidence. The material may still be damaging to the health of the individual, following ingestion, especially where pre-existing organ (e.g. liver, kidney) damage is evident. Present definitions of harmful or toxic substances are generally based on doses producing mortality rather than those producing morbidity (disease, ill-health). Gastrointestinal tract discomfort may produce nausea and vomiting. In an occupational setting however, ingestion of insignificant quantities is not thought to be cause for concern.

Phthalates (aromatic dicarboxylic acid esters), in general, exhibit low toxicity, partly because of poor absorption but mainly as a result of rapid metabolism in which the esters are saponified to phthalic acid (which is rapidly excreted) and the parent alcohol (which is subsequently metabolised). The pathology of these compounds seems to be related to the released alcohol and its biological effects. The rate of absorption of ingested phthalate esters is influenced by the content of dietary fat. Ingested phthalate esters may to a lesser degree be absorbed as the monoester derivatives or in the case of di2-ethylhexylphthalate, as the dister. Cumulative toxicity of the phthalates has been observed on repeated administration. Both di-n-octyl phthalate and di(2-ethylhexyl)phthalate were found to have 22-28 times greater toxicity (based on LD50s) following repeated administration to animals. The liver has been shown to be the target organ affected by the phthalates. In general phthalates have induced liver enlargement; this increase in liver weight has been attributed to rapid cell division (hyperplasia) along with the detachment of cells (hyper trophy). The increase in liver weight caused by phthalates has been found to reverse to normal or even below normal levels on prolonged exposure.

Exposure to phthalates, in general, has been found to be associated with a reduction in circulating cholesterol and serum triglyceride levels which accounted for a reduction in liver steatogenesis. The phthalates also affect carbohydrate metabolism in the liver producing depleted glycogen electron transport inhibitors following interaction with mitochondria. Testicular atrophy produced in rats during feeding studies depends on the length and structure of the alcohol; in general the lower molecular weight esters produce the more severe effects. The toxicity of phthalic acid isomers decreases in the order o-phthalic acid, isophthalic acid and terephthalic acid. Phthalic acid is not metabolised but is excreted, unchanged, in the urine and faeces. Terephthalic acid appears to potentiate the biological effects of substances such as antibiotics, thiuram and sulphonamides.

Skin Contact

Skin contact is not thought to have harmful health effects (as classified under EC Directives); the material may still produce health damage following entry through wounds, lesions or abrasions.

Limited evidence exists, or practical experience predicts, that the material either produces inflammation of the skin in a substantial number of individuals following direct contact, and/or produces significant inflammation when applied to the healthy intact skin of animals, for up to four hours, such inflammation being present twenty-four hours or more after the end of the exposure period. Skin irritation may also be present after prolonged or repeated exposure; this may result in a form of contact dermatitis (nonallergic). The dermatitis is often characterised by skin redness (erythema) and swelling (oedema) which may progress to blisters (vesication), scaling and thickening of the epidermis. At the microscopic level there may be intercellular oedema of the spongy layer of the skin (spongiosis) and intracellular oedema of the epidermis.

Eye

Evidence exists, or practical experience predicts, that the material may cause eye irritation in a substantial number of individuals and/or may produce significant ocular lesions which are present twenty-four hours or more after instillation into the eyes of experimental animals.

Repeated or prolonged eye contact may cause inflammation characterised by temporary redness (similar to windburn) of the conjunctiva (conjunctivitis); temporary impairment of vision and/or other transient eye damage/ulceration may occur.

Chronic

Long-term exposure to the product is not thought to produce chronic effects adverse to health (as classified by EC Directives using animal models); nevertheless exposure by all routes should be minimised as a matter of course.

<table>
<thead>
<tr>
<th>Leather Cream Conditioner</th>
<th>TOXICITY</th>
<th>IRRITATION</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Not Available</td>
<td>Not Available</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Alcohol C12-15 ethoxylated</th>
<th>TOXICITY</th>
<th>IRRITATION</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Dermal (rabbit) LD50: >2000 mg/kg2</td>
<td>Eye: SEVERE *</td>
</tr>
<tr>
<td></td>
<td>Oral (rat) LD50: 1600 mg/kg2</td>
<td>Skin: slight</td>
</tr>
</tbody>
</table>

Legend:

1. Value obtained from Europe ECHA Registered Substances - Acute toxicity 2. Value obtained from manufacturer's SDS. Unless otherwise specified data extracted from RTECS - Register of Toxic Effect of Chemical Substances

Polyethers, for example, ethoxylated surfactants and polyethylene glycols, are highly susceptible towards air oxidation as the ether oxgens will stabilize intermediary radicals involved. Investigations of a chemically well-defined alcohol (pentae thylene glycol mono-n-dodecyl ether) ethoxy lated, showed that polyethers from complex mixtures of oxidation products when exposed to air.

Sensitization studies in guinea pigs revealed that the pure nonoxidized surfactant itself is nonsensitizing but that many of the investigated oxidation products are sensitizers. Two hydroperoxides were identified in the oxidation mixture, but only one (16-hydroperoxy-3,6,9,12,15-pentaoxaheptacosan-1-ol) was stable intermediaries involved. Investigations of a chemically well-defined alcohol (pentae thylene glycol mono-n-dodecyl ether) ethoxy lated, showed that polyethers from complex mixtures of oxidation products when exposed to air.

Sensitization studies in guinea pigs revealed that the pure nonoxidized surfactant itself is nonsensitizing but that many of the investigated oxidation products are sensitizers. Two hydroperoxides were identified in the oxidation mixture, but only one (16-hydroperoxy-3,6,9,12,15-pentaoxaheptacosan-1-ol) was stable enough to be isolated. It was found to be a strong sensitizer in LLNA (local lymph node assay for detection of sensitization capacity). The formation of other hydroperoxides was indicated by the detection of their corresponding aldehydes in the oxidation mixture.

On the basis of the lower irritancy, nonionic surfactants are often preferred to ionic surfactants in topical products. However, their susceptibility towards autoxidation also increases the irritation. Because of their irritating effect, it is difficult to diagnose ACD to these compounds by patch testing.

Human beings have regular contact with alcohol ethoxylates through a variety of industrial and consumer products such as soaps, detergents, and other cleaning products. Exposure to these chemicals can occur through ingestion, inhalation, or contact with the skin or eyes. Studies of acute toxicity show that volumes well above a reasonable intake level would have to occur to produce any toxic response. Moreover, no fatal case of poisoning with alcohol ethoxylates has ever been reported. Multiple studies investigating the acute toxicity of alcohol ethoxylates have shown that the use of these compounds is of low concern in terms of oral and dermal toxicity.

Clinical animal studies indicate these chemicals may produce gastrointestinal irritation such as ulcerations of the stomach, pilo-erection, diarrhea, and lethargy. Similarly, slight to severe irritation of the skin or eye was generated when undiluted alcohol ethoxylates were applied to the skin and eyes of rabbits and rats. The chemical shows no indication of being a genotoxic, carcinogenic, or mutagen (HERA 2007). No information was available on levels at which these effects might occur, though toxicity is thought to be substantially lower than that of nonylphenol ethoxylates.

Polyethers, for example, ethoxylated surfactants and polyethylene glycols, are highly susceptible towards air oxidation as the ether oxgens will stabilize
intermediary radicals involved. Investigations of a chemically well-defined alcohol (pentaehtylene glycol mono-n-dodecy ether) ethoxylate, showed that polyethers form complex mixtures of oxidation products when exposed to air. Sensitization studies in guinea pigs revealed that the pure nonoxidized surfactant itself is nonsensitizing but that many of the investigated oxidation products are sensitizers. Two hydroperoxides were identified in the mixture, but only one (16-hydroperoxyperoxoheptacosan-1-ol) was stable enough to be isolated. It was found to be a strong sensitizer in LLNA (local lymph node assay) for detection of sensitization capacity). The formation of other hydroperoxides was indicated by the detection of their corresponding aldehydes in the oxidation mixture.

On the basis of the lower irritancy, nonionic surfactants are often preferred to ionic surfactants in topical products. However, their susceptibility towards autooxidation also increases their irritation effect. It is difficult to design surfactants with irritation effects by patch testing. Alcohol ethoxylates are according to CESIO (2000) classified as Irritant or Harmful depending on the number of EO-units: EO < 5 gives Irritant (Xi) with R38 (Irritating to skin) and R41 (Risk of serious damage to eyes) EO > 5 gives Harmful (Xn) with R22 (Harmful if swallowed) - R38/41

In general, alcohol ethoxylates (AE) are readily absorbed through the skin of guinea pigs and rats and through the gastrointestinal mucosa of rats. AE are quickly eliminated from the body through the faeces, and expired air (CO2).Orally dosed AE was absorbed rapidly and extensively in rats, and more than 75% of the total dose was recovered after 24 h in the urine. When applied to the skin of humans, the doses were absorbed slowly and incompletely (50% absorbed in 2 hours). Half of the absorbed surfactant was excreted in the urine and smaller amounts of AE appeared in the faeces and expired air (CO2). The metabolization of C12 AE yields PEG, carboxylic acids, and CO2 as metabolites. The LD50 values after oral administration to rats ranged from about 1-15 g/kg body weight indicating a low to moderate acute toxicity.

The ability of nonionic surfactants to cause a swelling of the stratum corneum of guinea pig skin has been studied. The swelling mechanism of the skin involves a combination of ionic binding of the hydrophilic group as well as hydrophobic interactions of the alkyl chain with the substrate. One of the mechanisms of skin irritation caused by surfactants is considered to be denaturation of the proteins of skin. It has also been established that there is a connection between the potential of surfactants to denature protein to vita and its effect on the skin. Nonionic surfactants do not carry any net charge and, therefore, they can only form hydrophobic bonds with proteins. For this reason, proteins are not deactivated by nonionic surfactants, and proteins with poor solubility are not solubilized by nonionic surfactants. A substantial amount of toxicological data and information in vivo and in vitro demonstrates that there is no evidence for alcohol ethoxylates (AEs) being genotoxic, mutagenic or carcinogenic. No adverse reproductive or developmental effects were observed. The majority of available toxicity studies revealed NOAELs in excess of 300 mg/kg bw/d and the lowest NOAEL for an individual AE was 50 mg/kg bw/d. This value was subsequently considered as a conservative, representative value in the risk assessment of AE. The effects were restricted to changes in organ weights with no histopathological organ changes with the exception of liver hyper trophy (indicative of an adaptive response to metabolism rather than a toxic effect). It is noteworthy that there was practically no difference in the NOAEL in oral studies of 90-day or 2 years of duration in rats. A comparison of the aggregate consumer exposure and the systemic NOAEL (taking into account an oral absorption value of 20%) results in a Margin of Exposure of 5,800. Taking into account the conservatism in the exposure assessment and the assigned systemic NOAEL, this margin of exposure is considered more than adequate to account for the inherent uncertainty and variability of the hazard database and inter and intra-species extrapolations.

AEs are not contact sensitisers. Neat AE are irritating to eyes and skin. The irritation potential of aqueous solutions of AEs depends on concentrations. Local dermal effects due to direct or indirect skin contact in certain use scenarios where the products are diluted are not of concern as AEs are not expected to be irritating to the skin at in-use concentrations. Potential irritation of the respiratory tract is not a concern given the very low levels of airborne AE generated as a consequence of spray cleaner aerosols or laundry powder detergent dust.

In summary, the human health risk assessment has demonstrated that the use of AE in household laundry and cleaning detergents is safe and does not cause concern with regard to consumer use. For high boiling ethylene glycol ethers (typically triethylene- and tetrathylene glycol ethers):

Skin absorption: Available skin absorption data for triethylene glycol ether (TGBE), triethylene glycol methyl ether (TGME), and triethylene glycol ethylene ether (TGEE) suggest that the rate of absorption in skin of these three glycol ethers is 22 to 34 micrograms/cm²/hr, with the methyl ether having the highest permeation constant and the butyl ether having the lowest. The rates of absorption of TGBE, TGEE and TGME are at least 100-fold less than EGME, EGBE, and EGEE, their ethylene glycol monoalkyl ether counterparts, which have absorption rates that range from 214 to 2890 micrograms/cm²/hr. Therefore, an increase in either the chain length of the alkyl substituent or the number of ethylene glycol moieties appears to lead to a decreased rate of percutaneous absorption. However, since the ratio of the change in values of the ethylene glycol to the diethylene glycol series is larger than that of the diethylene glycol to triethylene glycol series, the effect of the length of the chain and number of ethylene glycol moieties on absorption diminishes with an increased number of ethylene glycol moieties. Therefore, although tetrathylene glycol butyl ether (TetraBE) are expected to be less permeable to skin than TGBE and TGME, the differences in permeation between these molecules may only be slight.

Metabolism: The main metabolic pathway for metabolism of ethylene glycol monomethyl ethers (EGME, EGEE, and EGBE) is oxidation via alcohol and aldehyde dehydrogenases (ALD/ADH) that leads to the formation of an alkoy acids. Alkoy acids are the only toxicologically significant metabolites of glycol ethers that have been detected in vivo. The principal metabolite of TGME is believed to be 2-(12-methoxyethyl)acetic acid. Although ethylene glycol, a known kidney toxicant, has been identified as an impurity or a minor metabolite of glycol ethers in animal studies it does not appear to contribute to the toxicity of glycol ethers.

The metabolites of polyethers are not likely to be metabolized to any large extent to toxic molecules such as ethylene glycol or the mono alkoy acids because metabolic breakdown of the ether linkages also has to occur.

Acute toxicity: Category members generally display low acute toxicity by the oral, inhalation and dermal routes of exposure. Signs of toxicity in animals receiving lethal oral doses of TGBE included loss of righting reflex and flaccid muscle tone, coma, and heavy breathing. Animals administered lethal oral doses of TGBE exhibited lethargy, ataxia, blood in the urogenital area and piloerection before death.

Irritation: The data indicate that the glycol ethers may cause mild to moderate skin irritation. TGEE and TGME are highly irritating to the eyes. Other category members show low eye irritation.

Repeat dose toxicity: Results of these studies suggest that repeated exposure to moderate to high doses of the glycol ethers in this category is required to produce systemic toxicity.

In a 21-day dermal study, TGME, TGBE, and TGEE were administered to rabbits at 1,000 mg/kg/day. Erythema and oedema were observed. In addition, testicular degeneration (scored as trace in severity) was observed in one rabbit given TGEE and one rabbit given TGME. Testicular effects included spermatid giant cells, focal tubular hypospermatogenesis, and increased cytoplasmatic vacuolisation. Due to a high incidence of similar spontaneous changes in normal New Zealand White rabbits, the testicular effects were considered not to be related to treatment. Thus, the NOAELs for TGME, TGBE and TGEE were established at 1,000 mg/kg/day. Findings from this report were considered unremarkable.

A 2-week dermal study was conducted in rats administered TGEE at doses of 1,000, 2,500, and 4,000 mg/kg/day. In this study, significantly increased red blood cell counts at 4,000 mg/kg/day and significantly increased urea concentrations in the urine at 2,500 mg/kg/day were observed. A few of the rats given 2,500 or 4,000 mg/kg/day had warty caecal contents and/or haemolyzed blood in the stomach. These gross pathologic observations were not associated with any histologic abnormalities in these tissues or alterations in haematologic and clinical chemistry parameters. A few males and females treated with either 1,000 or 2,500 mg/kg/day had a few small scabs or crusts at the test site. These alterations were slight in degree and did not adversely affect the rats.

In a 13-week drinking water study, TGME was administered to rats at doses of 400, 1,200, and 4,000 mg/kg/day. Statistically significant changes in relative liver weight were observed at 1,200 mg/kg/day and higher. Histopathological effects included hepatocellular cytoplasmatic vacuolisation (minimal to mild in most animals) and hyperplasia (minimal to mild) in males at all doses and hepatocellular hyperplasia (minimal to mild) in high dose females. These effects were statistically significant at 4,000 mg/kg/day. Cholangiofibrosis was observed in 7/15 high-dose males; this effect was observed in a small number of bile ducts and was of mild severity. Significant, small decreases in total test session motor activity were observed in the high-dose animals, but no other neurological effects were observed. The changes in motor activity were secondary to systemic toxicity.

Mutagenicity: Mutagenicity studies have been conducted for several category members. All in vitro and in vivo studies were negative at concentrations up to...
5,000 micrograms/plate and 5,000 mg/kg, respectively, indicating that the category members are not genotoxic at the concentrations used in these studies. The uniformly negative outcomes of various mutagenicity studies performed on category members lessen the concern for carcinogenicity.

Reproductive toxicity: Although mating studies with either the category members or surrogates have not been performed, several of the repeated dose toxicity tests with the surrogates have included examination of reproductive organs. A lower molecular weight glycol ether, ethylene glycol methyl ether (EGME), has been shown to be a testicular toxicant. In addition, results of repeated dose toxicity tests with TGME clearly show testicular toxicity at an oral dose of 4,000 mg/kg/day four times greater than the limit dose of 1,000 mg/kg/day recommended for repeat dose studies. It should be noted that TGME is 350 times less potent for testicular effects than EGME. TetraME is not likely to be metabolised by any large extent to 2-MMA (the toxic metabolite of EGME), and a mixture containing predominantly methylated glycol ethers in the C5-C11 range does not produce testicular toxicity (even when administered intravenously at 1,000 mg/kg/day).

Developmental toxicity: The bulk of the evidence shows that effects on the foetus are not noted in treatments with .1,000 mg/kg/day during gestation. At 1,250 to 1,650 mg/kg/day TGME (in the rat) and 1,500 mg/kg/day (in the rabbit), the developmental effects observed included skeletal variants and decreased body weight gain.

The material may produce severe irritation to the eye causing pronounced inflammation. Repeated or prolonged exposure to irritants may produce conjunctivitis.

SECTION 12 ECOLOGICAL INFORMATION

Toxicity

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Endpoint</th>
<th>Test Duration (hr)</th>
<th>Species</th>
<th>Value</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>alcohols C12-15 ethoxylated</td>
<td>LC50</td>
<td>96</td>
<td>Fish</td>
<td>1.03mg/L</td>
<td>4</td>
</tr>
<tr>
<td>alcohols C12-15 ethoxylated</td>
<td>EC50</td>
<td>48</td>
<td>Crustacea</td>
<td>0.302mg/L</td>
<td>4</td>
</tr>
<tr>
<td>alcohols C12-15 ethoxylated</td>
<td>EC50</td>
<td>96</td>
<td>Algae or other aquatic plants</td>
<td>0.7mg/L</td>
<td>4</td>
</tr>
<tr>
<td>alcohols C12-15 ethoxylated</td>
<td>EC50</td>
<td>504</td>
<td>Crustacea</td>
<td>0.260mg/L</td>
<td>4</td>
</tr>
<tr>
<td>alcohols C12-15 ethoxylated</td>
<td>NOEC</td>
<td>504</td>
<td>Crustacea</td>
<td>0.083mg/L</td>
<td>4</td>
</tr>
</tbody>
</table>

Legend:
- Data available but does not fill the criteria for classification
- Data available to make classification
- Data Not Available to make classification

For 2-bromo-2-nitropropan-1,3-diol (Bronopol)

Environmental fate:
One hydrolysis study indicates that bronopol appears to hydrolyse slowly at acidic or neutral pH conditions. Bronopol decomposes in aqueous solution on exposure to light. Increases in temperature increase decomposition.

Ecotoxicity:
Bird LD50: mallard duck 510 mg/kg
Bird dietary LC50: quail 4488 ppm
Daphnia magna EC50 (48 hr): 1.4 mg/l
Fish LC50: trout 41.5 ppm

Persistence and degradability

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Persistence: Water/Soil</th>
<th>Persistence: Air</th>
</tr>
</thead>
<tbody>
<tr>
<td>non-ionic surfactants, colouring agent, METHYLISOTHIAZOLONINE, 2-octyl-2H-isothiazol-3-one, BENZISOTHIAZOLONINE</td>
<td>HIGH</td>
<td>HIGH</td>
</tr>
</tbody>
</table>

Bioaccumulative potential

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Bioaccumulation</th>
</tr>
</thead>
<tbody>
<tr>
<td>non-ionic surfactants, colouring agent, METHYLISOTHIAZOLONINE, 2-octyl-2H-isothiazol-3-one, BENZISOTHIAZOLONINE</td>
<td>HIGH (BCF = 2500)</td>
</tr>
</tbody>
</table>

Mobility in soil

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Mobility</th>
</tr>
</thead>
<tbody>
<tr>
<td>non-ionic surfactants, colouring agent, METHYLISOTHIAZOLONINE, 2-octyl-2H-isothiazol-3-one, BENZISOTHIAZOLONINE</td>
<td>LOW (KOC = 23030)</td>
</tr>
</tbody>
</table>
SECTION 13 DISPOSAL CONSIDERATIONS

Waste treatment methods

Legislation addressing waste disposal requirements may differ by country, state and/or territory. Each user must refer to laws operating in their area. In some areas, certain wastes must be tracked. A Hierarchy of Controls seems to be common - the user should investigate:

- Reduction
- Reuse
- Recycling
- Disposal (if all else fails)

This material may be recycled if unused, or if it has not been contaminated so as to make it unsuitable for its intended use. If it has been contaminated, it may be possible to reclaim the product by filtration, distillation or some other means. Shelf life considerations should also be applied in making decisions of this type.

Note that properties of a material may change in use, and recycling or reuse may not always be appropriate.

DO NOT allow wash water from cleaning or process equipment to enter drains. It may be necessary to collect all wash water for treatment before disposal.

In all cases disposal to sewer may be subject to local laws and regulations and these should be considered first.

Where in doubt contact the responsible authority.

Recycle wherever possible or consult manufacturer for recycling options.

Consult State Land Waste Management Authority for disposal.

Bury residue in an authorised landfill.

Recycle containers if possible, or dispose of in an authorised landfill.

SECTION 14 TRANSPORT INFORMATION

Labels Required

| Marine Pollutant | NO |

Land transport (DOT): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS

Air transport (ICAO-IATA / DGR): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS

Sea transport (IMDG-Code / GGVSee): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS

Transport in bulk according to Annex II of MARPOL and the IBC code

Not Applicable

SECTION 15 REGULATORY INFORMATION

Safety, health and environmental regulations / legislation specific for the substance or mixture

<table>
<thead>
<tr>
<th>ALCOHOLS C12-15 ETHOXYLATED(68131-39-5) IS FOUND ON THE FOLLOWING REGULATORY LISTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Federal Regulations</td>
</tr>
<tr>
<td>Superfund Amendments and Reauthorization Act of 1986 (SARA)</td>
</tr>
<tr>
<td>SECTION 311/312 HAZARD CATEGORIES</td>
</tr>
<tr>
<td>Immediate (acute) health hazard</td>
</tr>
<tr>
<td>Delayed (chronic) health hazard</td>
</tr>
<tr>
<td>Fire hazard</td>
</tr>
<tr>
<td>Pressure hazard</td>
</tr>
<tr>
<td>Reactivity hazard</td>
</tr>
<tr>
<td>US EPA CERCLA HAZARDOUS SUBSTANCES AND REPORTABLE QUANTITIES (40 CFR 302.4)</td>
</tr>
<tr>
<td>None Reported</td>
</tr>
</tbody>
</table>

State Regulations

<table>
<thead>
<tr>
<th>US. CALIFORNIA PROPOSITION 65</th>
</tr>
</thead>
<tbody>
<tr>
<td>None Reported</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>National Inventory</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Australia - AICS</td>
<td>Y</td>
</tr>
<tr>
<td>Canada - DSL</td>
<td>Y</td>
</tr>
<tr>
<td>Canada - NDSL</td>
<td>N (alcohols C12-15 ethoxylated)</td>
</tr>
<tr>
<td>China - IECS</td>
<td>Y</td>
</tr>
<tr>
<td>Europe - EINEC / ELINCS / NLP</td>
<td>Y</td>
</tr>
<tr>
<td>Japan - ENCS</td>
<td>N (alcohols C12-15 ethoxylated)</td>
</tr>
<tr>
<td>Korea - KECI</td>
<td>Y</td>
</tr>
<tr>
<td>New Zealand - NZIoC</td>
<td>Y</td>
</tr>
</tbody>
</table>
SECTION 16 OTHER INFORMATION

Other information
Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references. The SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.

Definitions and abbreviations
PC – TWA: Permissible Concentration-Time Weighted Average
PC – STEL: Permissible Concentration-Short Term Exposure Limit
IARC: International Agency for Research on Cancer
ACGIH: American Conference of Governmental Industrial Hygienists
STEL: Short Term Exposure Limit
TEEL: Temporary Emergency Exposure Limit,
IDLH: Immediately Dangerous to Life or Health Concentrations
OSF: Odour Safety Factor
NOAEL: No Observed Adverse Effect Level
LOAEL: Lowest Observed Adverse Effect Level
TLV: Threshold Limit Value
LOD: Limit Of Detection
OTV: Odour Threshold Value
BCF: BioConcentration Factors
BEI: Biological Exposure Index

This document is copyright. Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH.
TEL (+61 3) 9572 4700.